Various Approaches for Detecting Substance Use Disorders among Adults with Schizophrenia

Sarah L. Desmarais
Richard A. Van Dorn
Brian G. Sellers
M. Scott Young
Marvin S. Swartz
Severe Mental Illness & Substance Use Disorders

• Epidemiological estimates suggest that almost half of adults with severe mental illness (SMI) evidence a lifetime substance use disorder
 – A rate 3x higher than general population

• Research converges on finding that adults with SMI at increased risk
 – Estimates range from 10-70% depending on assessment method
 – Relatively few approaches validated for use in this population
Diagnostic Approaches

• Formal diagnosis requires use of (semi) structured interview, such as *Structured Clinical Interview for DSM-IV Disorders* (SCID)
 – Recognized gold standard

• Other approaches
 – Alcohol and Drug Use Scales (AUS/DUS)
 – Self-report
 – Collateral reports
 – Biological tests

• Measures of substance *use* may over-identify *disordered use*
The Present Study

• Summary of literature to date:
 – No consensus regarding ‘best’ assessment approach.
 – Comprehensive, multi-indicator approach?
 – Discrimination between abuse & dependence?

• Purpose of present study:
 1. Relative accuracy of various approaches compared to SCID diagnoses
 2. Ability to discriminate between abuse and dependence
 3. Benefits of using multiple indicators to identify substance use disorders
Participants

• Data drawn from baseline assessments of 1,460 adults with schizophrenia who participated in NIMH CATIE study
 – Only 7% of screened patients excluded

• Descriptive characteristics
 – 73.9% male
 – 60% white
 – 74.3% had completed high school
 – 81.0% not married nor cohabitating with a partner
 – M age = 40.56 years ($SD=11.10$)
Measures & Procedures

- **SCID**
 - criteria for current (past month) substance use disorders

- **AUS/DUS**
 - Ratings (1=abstinent, 2=use without impairment, 3=abuse, 4=dependence, 5=dependence with institutionalization) regarding previous 3 months

- **Self-report**
 - Alcohol and drug use over previous 3 months

- **Collateral informant ratings**
 - Ratings (0=never, 1=rarely, 2=occasionally, 3=often) of problems with excessive use in prior month by family member/caregiver

- **Biological tests**
 - *Hair specimens* analyzed by radioimmunoassay (RIA)
 - *Drug urinalysis* performed with rapid multiple immunoassay
Statistical Analyses

• Prevalence
 – Prevalence of drug use disorders and alcohol use disorders
 – Detection ratios for assessments compared to SCID diagnoses, compared using McNemar tests

• Accuracy and discrimination
 – Sensitivity, specificity, positive predictive values, negative predictive values, % classified correctly, and AUCs
 • Z-scores to identify statistically significant differences in accuracy
 – Cohen’s kappas to evaluate agreement with SCID

• Incremental validity
 – Direct entry hierarchical logistic regression analyses
Prevalence

- **SCID**
 - 7.8% drug abuse and 5.5% drug dependence
 - 4.6% alcohol abuse and 4.2% alcohol dependence
- **Other approaches**
 - AUS/DUS
 - 7.3% drug abuse and 2.4% drug dependence
 - 5.1% alcohol abuse and 2.5% alcohol dependence
 - Collateral ratings
 - 7.9% for drug abuse and 3.8% for drug dependence
 - 10.1% for alcohol abuse and 4.4% for alcohol dependence
 - Self-report
 - 22.2% drug use
 - 34.6% alcohol use
 - Biological tests
 - Urine tests positive for 15.6%
 - Hair assays positive for 27.7%
Accuracy – Drug Use Disorders

• Assessment accuracy good across methods
 – Most AUCs > .70

• DUS ratings demonstrated greatest accuracy,
 – Followed by self-report, collateral ratings, biological tests

• AUCs for DUS ratings and self-report > biological tests
 \((zs > 3.07, ps < .005)\)
 – EXCEPTION: self-report \(\approx\) hair in identifying dependence

• All better at identifying abuse than dependence

• % classified correctly:
 – Low = 74.3% (hair identifying dependence)
 – High = 94.8% (DUS ratings \(\geq 4\) identifying dependence)

• Fair to moderate agreement \((\kappa = .22 - .42)\)
 – EXCEPTION: urine \((\kappa = .19)\) and hair \((\kappa = .15)\)
Accuracy – Alcohol Use Disorders

• Assessment accuracy good across methods
 – Most AUCs > .75
• No method outperformed other method (ps>.391)
• Mixed ability to identify specific SCID diagnoses
 – AUS better for dependence (AUC = .81) than abuse (AUC = .74)
 – Collateral ratings better for abuse (AUC = .76) than dependence (AUC = .64)
 – Self-report ≈ for abuse (AUC = .77) & dependence (AUC = .79)
• % classified correctly:
 – Low = 68.4% (AUS ratings ≥2 identifying dependence)
 – High = 96.6% (AUS ratings ≥4 identifying dependence)
• Poor to moderate agreement (κ = .13 - .46)
Abuse vs. Dependence

- Self-report, biological tests and collateral ratings performed \(\approx \) in detecting abuse and dependence
- Mismatch between DUS labels and SCID diagnoses
 - 3 on DUS labeled “drug abuse”, but less accurate than ratings of 2 or 3 \((z=3.11, p=.002)\)
 - 4 or 5 on DUS labeled “dependence”, but less accurate than ratings \(\geq 3 \) \((z=2.11, p=.035)\)
- Also mismatch between AUS labels and SCID diagnoses
 - 4 or 5 on AUS labeled “dependence”, but less accurate than ratings \(\geq 3 \) \((z=2.13, p=.033)\)
 - However, AUS=3 more accurate than ratings \(\geq 4 \) for identifying abuse \((z=3.89, p<.001)\)
Incremental Validity of Multiple Indicators for Drug Use Disorders

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Drug Abuse</th>
<th>Model fit $\chi^2(2)=152.96^{***}$, $R^2=.30$</th>
<th>Drug Dependence</th>
<th>Model fit $\chi^2(2)=150.70^{***}$, $R^2=.35$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>S.E.</td>
<td>ORs</td>
<td>95% CI</td>
</tr>
<tr>
<td>DUS</td>
<td>1.44***</td>
<td>.12</td>
<td>4.21</td>
<td>3.30-5.36</td>
</tr>
</tbody>
</table>

Notes. *p*<.05. **p**<.01. ***p***<.001. R^2 values are Nagelkerke.
Incremental Validity of Multiple Indicators for Drug Use Disorders

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Drug Abuse</th>
<th>Drug Dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model fit $\chi^2(2)=152.96^{***}$, $R^2=.30$</td>
<td>Model fit $\chi^2(2)=150.70^{***}$, $R^2=.35$</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>S.E.</td>
</tr>
<tr>
<td>DUS</td>
<td>1.44***</td>
<td>.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Drug Abuse</th>
<th>Drug Dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model fit $\chi^2(3)=199.28^{***}$, $R^2=.38$</td>
<td>Model fit $\chi^2(3)=161.58^{***}$, $R^2=.37$</td>
</tr>
<tr>
<td></td>
<td>$\Delta\chi^2(1)=46.31^{***}$</td>
<td>$\Delta\chi^2(1)=10.88^{***}$</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>S.E.</td>
</tr>
<tr>
<td>DUS</td>
<td>0.59***</td>
<td>.18</td>
</tr>
<tr>
<td>Self-report</td>
<td>2.70***</td>
<td>.43</td>
</tr>
</tbody>
</table>

Notes. *$p<.05$.* **$p<.01$. ***$p<.001$. R^2 values are Nagelkerke.
Incremental Validity of Multiple Indicators for Drug Use Disorders

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Drug Abuse</th>
<th>Drug Dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model fit $\chi^2(2)=152.96^{***}$, $R^2=.30$</td>
<td>Model fit $\chi^2(2)=150.70^{***}$, $R^2=.35$</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>S.E.</td>
</tr>
<tr>
<td>DUS</td>
<td>1.44^{***}</td>
<td>$.12$</td>
</tr>
<tr>
<td>Step 2</td>
<td>Model fit $\chi^2(3)=199.28^{***}$, $R^2=.38$</td>
<td>Model fit $\chi^2(3)=161.58^{***}$, $R^2=.37$</td>
</tr>
<tr>
<td></td>
<td>$\Delta \chi^2(1)=46.31^{***}$</td>
<td>$\Delta \chi^2(1)=10.88^{***}$</td>
</tr>
<tr>
<td>DUS</td>
<td>0.59^{***}</td>
<td>$.18$</td>
</tr>
<tr>
<td>Self-report</td>
<td>2.70^{***}</td>
<td>$.43$</td>
</tr>
<tr>
<td>Step 3</td>
<td>Model fit $\chi^2(5)=225.28^{***}$, $R^2=.42$</td>
<td>Model fit $\chi^2(5)=163.82^{***}$, $R^2=.38$</td>
</tr>
<tr>
<td></td>
<td>$\Delta \chi^2(2)=26.00^{***}$</td>
<td>$\Delta \chi^2(2)=2.24$</td>
</tr>
<tr>
<td>DUS</td>
<td>0.61^{***}</td>
<td>$.18$</td>
</tr>
<tr>
<td>Self-report</td>
<td>1.98^{***}</td>
<td>$.45$</td>
</tr>
<tr>
<td>Urine</td>
<td>1.13^{***}</td>
<td>$.29$</td>
</tr>
<tr>
<td>Hair</td>
<td>0.54</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Notes. *$p<.05$. **$p<.01$. ***$p<.001$. R^2 values are Nagelkerke.
Multi-Indicator Indices

• Combined test results
 – If positive result on one of DUS, collateral rating, self-report, biological test → drug use disorder
 – If positive result on one of AUS, collateral rating, self-report → alcohol use disorder

• Over-identified disorders compared to SCID
 – drug use disorder = 27.4% vs. 11.6%
 – alcohol use disorders = 35.7% vs. 7.6%

• Indices no more accurate than AUS/DUS ratings, collateral ratings or self-report
 – More accurate than biological tests (zs>2.77, ps<.006)
Summary of Findings

• All approaches performed reasonably well
 – AUS/DUS ratings, designed to detect disordered use, performed best in this function
 – Self-report often performed as well as AUS/DUS ratings
 – Biological tests demonstrated the lowest accuracy

• Limited evidence for discrimination between abuse and dependence

• Limited evidence for benefits of using multiple indicators
Limitations

• No information on interrater reliability of:
 – SCID assessments
 – AUS/DUS ratings

• Data missingness
 – Collateral interviews for subset of participants only
 – Biological test results not available for all participants

• Biological tests of drug but not alcohol use

• Timeframes differed slightly across approaches
Conclusions & Next Steps

• How to select ‘best’ diagnostic assessment approach?
 – Consider practical issues and purpose, rather than ‘most accurate’

• But,
 – Why lack of discrimination between abuse and dependence?
 – Does knowledge of biological testing affect self-report accuracy?
 – Why poor performance of biological tests?
Acknowledgement

• Funding provided by NIDA Award Number 1R03DA030850 (Van Dorn) and NIDA Award Number P30DA028807 (Desmarais).

—Content is solely the responsibility of the authors and does not necessarily represent the official views of the NIDA or the NIH.